Кощеев
Михаил Михайлович
Учитель математики МКОУ «Погорельская СОШ» Шадринского района Курганской области
для слабовидящих
Каким должен быть современный учитель?
Календарь учителя
8 класс
- Многоугольник — это фигура, составленная из отрезков так, что смежные отрезки не лежат на одной прямой, а несмежные отрезки не имеют общих точек.
- Сумма длин всех сторон многоугольника называется периметром многоугольника.
- Две вершины многоугольника, принадлежащие одной стороне, называются соседними.
- Отрезок, соединяющий любые две несоседние вершины, называется диагональю многоугольника.
- Многоугольник называется выпуклым, если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.
- Сумма углов выпуклого n-угольника равна (n–2)·180°.
- Четырёхугольник – это многоугольник у которого четыре вершины и четыре стороны.
- Две несмежные стороны четырёхугольника называются противоположными.
- Две вершины, не являющиеся соседними, называются противоположными.
- Сумма углов выпуклого четырехугольника равна 360°.
- Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.
- (Свойства параллелограмма) В параллелограмме противоположные стороны равны и противоположные углы равны. Диагонали параллелограмма точкой пересечения делятся пополам.
- (Признак параллелограмма) Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник — параллелограмм.
- (Признак параллелограмма) Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
- (Признак параллелограмма) Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
- Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются ее основаниями, а две другие стороны — боковыми сторонами.
- Трапеция называется равнобедренной, если её боковые стороны равны.
- Трапеция называется прямоугольной, если один из её углов прямой.
- (Т. Фалеса) Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
- Прямоугольником называется параллелограмм, у которого все углы прямые.
- (Особое свойство прямоугольника) Диагонали прямоугольника равны.
- (Признак прямоугольника) Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
- Ромбом называется параллелограмм, у которого все стороны равны.
- (Особое свойство ромба) Диагонали ромба взаимно перпендикулярны и делят его углы пополам.
- Квадратом называется прямоугольник, у которого все стороны равны.
- (Основные свойства квадрата) Все углы квадрата прямые. Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
- Две точки А и А1 называются симметричными относительно прямой а, если эта прямая проходит через середину отрезка АА1 и перпендикулярна к нему.
- Две точки А и А1 называются симметричными относительно точкиО, если О – середина отрезка АА1.
- (Основные свойства площадей) Равные многоугольники имеют равные площади.
- Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.
- Площадь квадрата равна квадрату его стороны ( S=a2).
- (Т.)Площадь прямоугольника равна произведению его смежных сторон (S=ab).
- (Т.)Площадь параллелограмма равна произведению его основания на высоту (S=ah).
- (Т.)Площадь треугольника равна половине произведения его основания на высоту (S=
- Площадь прямоугольного треугольника равна половине произведения его катетов (S=
- Если высоты двух треугольников равны, то их площади относятся как основания.
- Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.
- Площадь трапеции равна произведению полусуммы её оснований на высоту ( S=
- (Теорема Пифагора) В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. (с2=a2+b2)
- (Теорема, обратная теореме Пифагора) Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.
- Треугольник со сторонами 3, 4, 5 называют египетским треугольником.
- (Формула Герона) Площадь треугольника со сторонами a, b, c выражается формулой S=
- Говорят, что отрезки AB и CD пропорциональны отрезкам A1B1 и C1D1 , если
- Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.
- Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия.
- (Т.)Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.
- (Т. Первый признак подобия треугольников) Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
- (Т. Второй признак подобия треугольников) Если две стороны одного треугольника пропо