Сайт учителя математики
Кощеева Михаила Михайловича
Сайт учителя математики
slide1
Кощеев
Михаил Михайлович
Учитель математики МКОУ «Погорельская СОШ» Шадринского района Курганской области
для слабовидящих
Каким должен быть современный учитель?
Календарь учителя

Подготовка к олимпиадам

     Олимпиадная Задача - это почти всегда поиск, раскрытие каких-то свойств и отношений, а средство ее решения - это интуиция, эрудиция, владение методами математики. Эти же качества человеческого ума воспитываются, укрепляются, обогащаются у каждого, кто регулярно отдает часть своего досуга умственной гимнастике, лучшим видом которой является решение математических головоломок, ребусов, задач с интригующим содержанием. Олимпиадные задачи, как правило, являются нестандартными, то есть требующие использование всех знаний в нестандартных ситуациях.
     Подготовка учащегося к участию в олимпиаде — труд не одного года
Тренироваться, тренироваться и ещё раз тренироваться. Это не разовая мера, а кропотливая системная работа. Помимо систематической тренировки, особое место занимает скорость мышления ученика, которую тоже необходимо развивать.
Целесообразно начинать подготовку учеников в 6-7 классах. Только при таком подходе, учащийся, попавший на олимпиаду в 8-9 классах, будет чувствовать себя уверенно, так как, скажется опыт,накопленный при решении задач, включая не стандартные задачи. Подобная работа обязательно должна иметь программу, и желательно индивидуальную для каждого ученика.

           Распространенные элементарные задачи:
1. Из старой толстой книги выпал кусок, первая страница которого имеет номер 328, а номер последней записывается теми же цифрами, только в каком-то другом порядке. Сколько страниц в выпавшем куске? 
2. В стакане находятся бактерии. Через секунду каждая из бактерий делится пополам, затем каждая из получившихся бактерий через секунду делится пополам и так далее. Через минуту стакан полон. Через какое время стакан будет заполнен наполовину?
3. Если 5 кошкам нужно 5 минут, чтобы поймать 5 мышек, сколько требуется кошек, чтобы за 100 минут поймать 100 мышек?
4. На поверхности сферы наугад выбраны 3 точки. Какова вероятность того, что они окажутся в одном полушарии?
5. Имеется лист бумаги. Его разрезают на 4 части, затем некоторые из полученных кусков (или все) снова разрезают на 4 части. Доказать, что при этом нельзя получить 50 листов бумаги.
6. В мешке 24 кг гвоздей. Как, имея только чашечные весы без стрелки, отмерить 9 кг гвоздей?
7. Каждые полчаса паром переплывает реку. Если в первый раз он отправится к другому берегу в 730 утра, а в последний — в 8 вечера, то сколько раз паром переплывает реку за день?
8. Сколько раз в сутки часовая и минутная стрелки образуют прямой угол?
9. Червяк ползет по столбу, начав путь от его основания. Каждый день он проползает вверхна 3 см, а за каждую ночь спускается вниз на 1 см. Когда он достигнет верхушки столба, если высота столба 75 см?
10. Водолаз работает на глубине 20 метров под водой. Расстояние от поверхности воды до палубы корабля составляет — длины троса, причем — его длины остались на катушке. Какова максимальная глубина, на которую может опуститься водолаз?
11. Крокодил Гена с Чебурашкой плыли вверх по течению реки. Гена сидел на веслах, а Чебурашка, сидя на корме, ел апельсины. В момент, когда лодка проплывала под мостом, а Крокодил Гена был поглощен движением, Чебурашка заснул и нечаянно столкнул ящик с апельсинами в воду. Через полчаса Гена обнаружил пропажу ящика с апельсинами, развернул лодку по течению реки и стал догонять уплывающий ящик; еще через полчаса выловил его на расстоянии двух километров ниже моста по течению реки. Какова скорость течения реки?
12. В январе некоторого года было четыре пятницы и четыре понедельника. Каким днем недели было 20-е число этого месяца?
13. На вечеринке было 20 танцующих. Мария танцевала с семью танцорами, Ольга - с восьмью, Вера — с девятью, ... ,Лариса танцевала со всеми танцорами. Сколько танцоров (мужчин) было на вечеринке?
14. Сколько клеток пересекает диагональ в клетчатом прямоугольнике размером 199х991?
15. Найдите наименьшее число, которое при делении на 2 дает в остатке 1, при делении на 3 дает в остатке 2, при делении на 4 дает в остатке 3, при делении на 5 дает в остатке 4 и при делении на 6 дает в остатке 5.
16. Кот Васи перед дождем всегда чихает. Сегодня он чихнул. «Значит, будет дождь», - думает Вася. Прав ли он?
17. Словам соответствуют цифры: корова — 2, кошка — 3, кукушка - 4. Какая цифра по Вашему мнению должна соответствовать слову «собака»?
18. Учитель рисует на листке бумаги несколько кружков и спрашивает одного ученика: «Сколько здесь кружков?». «Семь», — отвечает ученик. «Правильно. Так сколько здесь кружков?», - спрашивает учитель второго ученика. «Пять», — отвечает тот. «Правильно», - снова говорит учитель. Так сколько же кружков нарисовал учитель на листке?
19. Петя говорит: «Позавчера мне еще было 10 лет, а в следующем году мне исполнится 13». Может ли такое быть?
20. Из стакана молока три ложки содержимого переливают в стакан с чаем и тщательно размешивают смесь. Затем три ложки смеси переливают обратно в стакан с молоком. Чего теперь больше: чая в стакане с молоком или молока в стакане с чаем?
21.В кошельке лежат две монеты на общую сумму 15 копеек. Одна из монет не пятак. Что это за монеты?
22.Составьте из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 магический квадрат, то есть разместите их в таблице 3x3 так, чтобы суммы чисел по строкам, столбцам и двум диагоналям были одинаковы.
            

Связаться со мной
Здесь вы можете отправить мне вопрос на электронную почту, и я обязательно вам отвечу
Нажимая кнопку «Отправить», вы подтверждаете свое согласие на обработку персональных данных
Ваш ответ
Здесь вы можете отправить решение задачи, и я обязательно вам отвечу
Нажимая кнопку «Отправить», вы подтверждаете свое согласие на обработку персональных данных